Software for Multicomputer
Communications

J. W. Layland

Communications Systems Research Section

This article contains a brief discussion of the alternatives which exist for
software support of intercomputer communications in a multiple minicomputer
network, and a detailed description of a software package which implements a
relatively flexible option on the Xerox 910/920/930 and Sigma computers. The
material should be applicable to the intercomputer communication needs of the
tracking stations as the number of subsystem control minicomputers within

these stations increases in the near future,

l. Introduction

The tracking stations of the Deep Space Network
currently use a few computers for handling telemetry and
command data streams, for control of the large antenna,
and for monitoring various performance measures of the
station. It is expected that computerized control and
monitoring of station functions will greatly increase in the
near future in order to generally improve maintainability,
and to increase the fraction of time that the station is
available for spacecraft tracking. Given current trends, this
increased computerization will likely be accomplished
through a number of small computers, each of which is

- interfaced to some specific subset of the tracking station
equipment. Each of these subsystem computers would be
interfaced in some fashion with the other computers in
order to enhance the coordinated operation of the station,
and to enable the pooling of certain resources, such as

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-26

computer unit-record peripherals. Multiple minicomputer
networks have been used successfully in industry in a
variety of process control and monitoring applications. A
similar multiple minicomputer network is under develop-
ment as the DSN Network Control System (NCS),
wherein each of the minicomputers performs a dedicated
monitor/control function for the network operation as a
whole. In the NCS, the separation between functional
entities effects a well-defined physical interface between
software development teams for each of the functions.
This separation has been viewed as a means to increasing
software reliability and easing some of the problems
inherent in developing large multi-function systems. The
communication paths which exist between the minicom-
puters must support the interface between the various
functions of the system, hence the organization of these
paths, and the associated features, represents a significant
item in the overall system design.

145

A previous article (Ref. 1) described one approach to
the capabilities and features of an intercomputer commu-
nication structure usable in these applications, and a
second article (Ref. 2) is a detailed description of our
“twin-coax” intercomputer communications hardware and
interfaces. Within this framework, a large amount of
flexibility still exists for communication modes to be
supported by the software, and the overall system
organization. Section II of this article contains a brief
discussion of the alternatives which exist in software
support of intercomputer communications; succeeding
sections contain a detailed description of the software
which implements one of the more complex and flexible
options on our Xerox 910/930 and Sigma computers.

Il. Features and Capabilities

The communications paths which are established
between computers in a multicomputer structure have
one primary reason for their existence: to provide
distributed access to resources and/or data which are
maintained as a private or localized resource for reasons of
economy, reliability, or policy. In a tracking station,
examples of such resources could include the current-exact
antenna position, the most recent estimate of the
telemetry downlink signal-to-noise ratio, the floating-point
arithmetic capability needed to evaluate predict polyno-
mials, data-storage devices, and computer input/output
devices. One of the more important considerations in
defining capabilities is that the overall system must be
robust and tolerant of both data errors in messages and
failures inside any one of the subsystems. A straightfor-
ward system organization, and one which can be the most
resistant to propagation of errors is a simple hierarchy:
Each subsystem minicomputer “owns” a small segment of
the overall system, and performs all control, monitoring,
and data handling functions associated with that segment
of the system. Groups of the subsystem minicomputers are
in turn owned by a supervision-type minicomputer, and so
on. Capabilities which are needed by a subsystem are
mostly contained within the subsystem minicomputer, and
those capabilities not contained are provided by a higher
level of the hierarchy. Physical communication paths exist
only along vertical lines of the hierarchy. The simplicity of
such an organization limits the propagation of failures
through the system, makes it relatively easy to intelli-
gently allocate resources, and restricts the growth of
complexity in the software developed to support the
intercomputer communications paths.

This simplicity also restricts flexibility for changes and
for recovery from certain types of computer failures. The
greatest flexibility would be obtained by providing a

146

universal communication bus which allowed any computer
to communicate with any other computer and/or any
item of system hardware. Such flexibility enables “instant”
failure recovery but also enables extensive error propaga-
tion through the system. It also appears that it would be
quite difficult to build. Our overall approach (Ref. 1)
utilizes a functional equivalent of the universal bus
between computers, but retains “ownership” of subsystem
hardware by the subsystem control computer. Logical
communication paths would be established on this bus for
current operations, and revised as needed for mission
changes. Intercomputer communications software could
be organized into a simple hierarchy using this bus, or the
software could be made transparent to the bus organiza-
tion, retaining its flexibility and complexity for the
“applications-level” software. In the software package to
be described later, the logical communication paths are
not “built in” the software, but are established dynami-
cally during program execution.

During initialization and system start-up, these commu-
nication paths would carry programs and operating data
bases from a pooled storage facility to each of the
subsystem control computers, and, in response to a failure
in any part, additional diagnostic programs could be
transferred from the same facility to the one affected unit
or units. Activation and deactivation of various program
parts in each subsystem would also occur in response to
messages transmitted on these communication paths.

During normal operation, data describing the current
status of parts of the system would be transferred from the
subsystems which measured or computed those data to
other subsystems which need them. Assuming a hierarchi-
cally organized system, such communication would only
occur along the lines of authority within the system.

During software and system development, yet a third
mode of operation occurs, where a subsystem control
computer has some, but not all, of the resources needed
for software development. The software loaded into the
subsystem computer from the central repository is in this
case the assembler/compiler for that machine’s language.
When this program is activated, the computer communi-
cations paths provide it access to three or more distinct
and independent devices which exist as peripherals to one
or more of the other computers, or which are emulated
through software or data storage devices on other
computers. This is closely analogous to a “remote batch”
operation, except that here the computing element is local
to the subsystem engineer’s interest, and the unit-record
peripherals are remote.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-26

An intercomputer communications driver package has
been developed which appears in principle to be capable
of performing in any of these operational modes.
Complete error control logic is included for data errors
and errors in addressing of messages. Some features are
provided, such as data type identification, and multiple
logical paths between any computers, for which as yet
only a hypothesized need exists—in the belief that such
features were easier to include in the initial package, and
then remove if not needed, than they would be to add at a
later date.

lll. Link-Network Software Package

The communications software package consists of a
collection of interrelated subroutines which provide the
direct interface between a subsystem’s main, or “applica-
tions-level” program, and the intercomputer communica-
tions hardware which physically connects the computers.
In addition, this package provides error detection and
control logic, message formatting, buffer management, and
a variety of lesser services for the calling program. The
computer link-network is organized conceptually as in Fig.
1, although the physical organization may differ. Each
minicomputer has a unique identifying number which is
used to address messages to it from any other minicom-
puter through the switch “X.” Up to seven distinct bi-
directional logical channels may exist between any pair of
computers, as determined during program execution.

Table 1 lists the subroutine entry calling sequences for
the two currently existing implementations of the link-
network communications package. The principal entry
points are those for establishing read-requests, or requests
to receive data; for writing data along a path to a specified
destination computer on any of the logical channels; and
for checking the completion of prior requests. Entry
points in the lower half of Table 1 provide for general
management of the communications paths. A description
of these subroutine calling sequences and their effect
appears in Section V, together with a description of the
tables which must appear in the calling program. The
descriptions which follow in Sections IV to VI are in
sufficient detail to serve as a manual for the user of the
link-network package, and may be skipped by the casual
reader.

IV. Message Protocol

The adopted message format is shown in Fig. 2. It is a
close derivative of the formats of the IBM Multileaving
protocol, with the addition of the two address bytes. The

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-26

Multileaving terminology is used to identify the other
overhead bytes, where applicable.

Both address bytes are of the form! X‘CO’ + n, where
n is the computer identity number, in the range from 1 to
63. They serve to uniquely identify a communication path
from computer “SRC” to computer “DST.” The reverse
path is denoted by a reversal of the address codes, and is
always activated simultaneous with the forward path. The
Block Control Byte (BCB) is of the form X‘CO’ + m,
where m is a 4-bit block sequence counter. Blocks are
numbered sequentially on any SRC/DST path-pair, and
are transmitted alternately in a half-duplex fashion. Along
any path-pair, the lower computer identity number
designates the “master,” which receives only even-
numbered blocks, and sends only odd-numbered blocks. An
alternate BCB form of X'FO’ is used to initialize the
communication path, and a BCB of X'FF is used to
terminate. Either end of a path-pair may initiate
communication, but both must send and receive the
initialize BCB before data communication can begin.

The Record Control Byte (RCB) and Functional Control
Sequence (FCS) bytes serve to divide each path-pair into
seven logically independent duplex channels. The RCB
also identifies the type of message block. Each bit of the
FCS signifies, when set to 1, that data may be transmitted
on the corresponding logical channel. It is reset to 0 when
the requested data have been received, and set to 1 when
data are again requested. For example, an FCS value of
X‘40 signifies a data request on channel 1, and an FCS of
X‘31" signifies data requests on channels 2, 3, and 7. The
FCS value of X‘80" is used in terminating. The format of
the RCB is shown in Fig. 3. The least-significant three bits
of the byte identify the logical channel to which this
message belongs. A type code of B‘10’ indicates that the
message block contains data, and that the String Control
Byte (SCB) contains the total byte count for the block,
including overhead bytes. For data blocks, B, = 1
indicates binary (non-text) mode data, By = 1 indicates
string-compressed data, and B; = 1 indicates machine-
dependent data format. B; = B; = 0 indicates American
Standard Code for Information Interchange (ASCII) text.
String-compressed data are not supported by existing
software, but could be implemented within user programs.
A type code of B'01’ or B'00’ indicates that the message
block is a signal or channel operation which requires user-
program action. The total message package is the six
overhead bytes. Bits B;, By, and B; and the SCB specify
the signal value. No specific response to the signals is

n the following, X'yy’ means hexadecimal constant yy, and B'yy’
means binary constant yy.

147

implemented within the communications software, but
conventions should be established for specific signals to
implement device/file positioning operations. A feasible
set appears as Table 2. A type code of B’11’ indicates a
null or idle message block, which may appear during
initiation, termination, or to maintain synchronism when
no data are available to be transmitted on channels with
active requests.

Data transferred through the link are maintained error-
free and in-sequence as far as possible. Any message
blocks that are received in error, are truncated, are out of
sequence, or have been misrouted are discarded by the
receiving error control logic. Message blocks which have
been transmitted in error, or for which no reply block is
received within a pre-determined time period, are
retransmitted.

V. User/Software Interface

This section describes the interface between a user or
applications-level program for the link-network communi-
cations package, and that package. The description is
based upon the 910/930 implementation of the link
software. Variations in details for the Sigma 5 implemen-
tation will be described at the end of this section.

The user program contains several tables which define
the structure and status of the multicomputer network.
The first of these is the Link Table (LNKTAB), which is
illustrated in Fig. 4. It contains one word for each
computer, which is defined to the link-network package.
The most significant byte of each word contains a text
character, which is the software name for the associated
computer. The less significant bytes contain a pointer to
the Link Control Block (LCB) for the associated computer,
or they may contain zero if no LCB exists. The software
name characters have been assigned sequentially starting
with ‘A’ to facilitate table operations. The current
assignments appear in Fig. 4. The LNKTAB must be set
up by the user programs. The user program must also
provide an address word labeled “MYNAME” which
contains that computer’s link name in the form X‘CO’ +
n in the second most significant byte.

The Link Control Block contains the data used by the
link-network package to contrel the transfer of data along
the associated path-pair and maintain synchronism
between the attached user programs. The format of the
LCB is shown in Fig. 5. The 29 words for each LCB are
provided within the user program. The first word, the
LCB chain word, is pointed to by the appropriate
LNKTAB entry, and by the chain of the next lower LCB,

148

and points in turn to the next higher LCB, or contains -1.
The LCB chain word is set up by the user program; the
remainder of the LCB is set up by a call to IOCLEAR. All
LCBs connected to LINKTAB plus lower-level routines
are initialized by calling IOCLEAR with the A-register =
0. Only the specified LCB is initialized if the A-register
contains a pointer word from LNKTAB when IOCLEAR
is called.

The second word of the LLCB defines the current state of
operation along the path-pair, and will be described in
some detail in Section VI. State includes the block
sequence counter, read/write mode flags, initialization
flags, the error-retry counter, etc. CURBLK is a pointer to
the current or most recent past transmitted block, and is
-1 if said block is undefined. TIMER is the clock-count
cell used to recognize lost data and is negative when
ticking. The fifth through ninth words contain flags which
define the state of each of the seven logical channels; they
are in the same format as the FCS byte of the transmitted
data block. The RDFLG and HSRDFLG, in fact, contain
the next FCS to be sent, and the most recent FCS
received in their most significant byte. The write-stack
(WRTST$) contains a queue of data blocks which have
been enabled for transmission by read-requests from the
incoming FCS. The channel-write-buffer pointers
(CHNWB) contain addresses of the current or most recent
data blocks associated with each logical channel. If
transmission is not enabled (the write is blocked or is
complete), the data block address will only appear in the
CHNWB. The remainder of the LCB represents a
shortened dummy data block which is used for initializa-
tion, termination, and idling messages on the associated
path.

Data to be transmitted by the link-network package are
contained in buffers with content-specifying header.
Identical buffers are used to receive data. The general
format of these buffers is shown in Table 3. The QCHAIN
word is used to link the buffer into FIFO queues, as
needed in handling. OWNER contains the software name,
computer path plus channel, to which the data buffer
belongs. BUFSZE is the available data space within the
buffer block, in words. Oversize incoming data blocks will
be truncated to this value. WCW contains the number of
words from the data portion of the buffer block which
should be transmitted, and is meaningful only when data in
the buffer block are being prepared for transmission.

AWCW and STATW are meaningful only after data
have been transferred in or out of the buffer block.
AWCW contains the number of words actually transfer-
red, and should be equal to WCW for transmission, and

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-26

less than or equal to BUFSZE for receiving. STATW
contains the link hardware cumulative status at the end of
170 transfers. The remainder of the buffer block contains
the data words, including overhead bytes, actually
transferred on the links. A subroutine IOBUFSET is
provided to carve up an arbitrarily sized storage area into
preformatted buffer blocks with space for 132 data bytes.
The beginning and ending addresses of the buffer storage
area are specified to IOBUFSET in the A- and B-registers,
respectively. Three of these buffers are immediately
transferred to a low-level subroutine for incoming data.
The remainder are queued in a buffer pool. Buffer blocks
are placed into this pool by calls to BUFPUT, and
removed from it by calls to BUFGET with the A-register
containing the buffer block address. Return from BUFPUT
is to the calling-address+1. Return from BUFGET is
call + 2 if successful, and call + 1 if no buffer is available. It
is a user-program responsibility to avoid losing buffers and
emptying the buffer pool.

Data transfer between user programs and the link-
network package is handled by five subroutines, with
auxiliary services handled by three others. Arguments are
transferred to these subroutines in the A- and B-registers,
with the A-register identifying the intended computer/
channel pair by its software link name, and the B-register
pointing to a buffer block, if needed. The software link
names are composed of the channel number in the least-
significant byte, and the text character identifying the
destination computer in the next least-significant byte.
Return from the subroutines is to the call-location+2 if
the requested operation is accepted, and to call+1 if the
request was invalid or rejected. With minor exception to
be noted, buffer blocks are returned to the user program
via pointers in the A-register. End-action for any
previously completed transfers is performed on entry to
these routines.

IOSTART requests the start of operation of the
identified logical channel on the specified path. If it is the
first channel on the specified path to be started, a path
initialization is also performed. IOSTOP terminates
operation on the identified logical channel. If this is the
last active channel on the specified path, that path is
terminated. IOSWAIT is a convenience routine which
rejects all calls until the opposite end of the path-pair has
been initialized.

IOGET establishes a read-request for the identified
logical channel, which is subsequently communicated via
the FCS to the opposite end of the path-pair. IOPUT

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-26

attaches the buffer block in the B-register to the identified
logical channel and prepares to transmit the data
contained in that block along the appropriate path. The
identified channel is immediately set Busy. The transmis-
sion is blocked until a corresponding read-request has been
received from the opposite end of the path-pair.
IOSIGNL transfers the signal bytes in the B-register into
an available buffer from the pool, and then proceeds
similarly to IOPUT. Any transfer request on an already
busy channel is rejected.

IOCHEKR is called to test the status and availability of
the incoming half of the identified logical channel. A
returned value of A = -8 occurs if the channel has not
been started. The value A = 0 occurs if there is no
completed incoming data transfer. If a data block has been
received for the identified channel, it is returned via an
A-register pointer. If a signal has been received, the
A-register returns the identified channel’s software-link
name with the addition of the bit-flag X'08” in the most-
significant byte. The signal value is returned in the
B-register.

IOCHEKW is called to test the status and availability of
the outgoing half of the identified logical channel. A
returned value of A = -8 occurs if the channel is not
busy, and no read-request has been received from the
opposite end of the path-pair. The value A = 0 occurs if
the channel is not busy, but an active read-request has
been received. The value A = -1 occurs if the channel is
busy and the transmission is not complete. If the channel
is busy and the transmission is complete, the channel is set
to not busy, and the current buffer-block pointer (or signal
value) is returned in the A-register together with a
completion flag of X‘08’ in the most-significant byte.

A summary of subroutine calls for the 910/930 appears
in Table 1, together with a rudimentary description of its
action. The primary reason for the unpleasant complexity
which has appeared here is the need to maintain
synchronism over the independent logical channels
between user programs at the opposite ends of the path-
pair.

The principal difference between the link-network
software package described above for the 910/930 and the
corresponding package for the Sigma 5 is that the latter is
embedded within a semi-permanent operating system,
whereas the former is a part of the transient user
program. In the Sigma 5, each defined path-pair is

149

considered as a re-usable resource which may be
transiently owned by a user program.

The link software is accessed via the system-call
instructions CAL3,12 N from either a background
program or a terminal-user program. The LNKTAB and
the defined LCBs are a part of the resident monitor, as are
a minimal set of buffer blocks through which the actual
1/0 is done. Data are exchanged between the monitor
buffers and corresponding user-space buffers via the 10
calls. Table 1 also lists the link package calls for the Sigma
5. Two new routines have been added to manage the
“ownership” of the link paths, and several routines which
were accessible in the 910/930 have been subverted to
these routines, or to monitor initialization. ATTACH
establishes ownership of a specified path, if it is not
already owned by another active job, and RELEASE frees
the specified path from ownership by the current job. All
owned paths are released at the end of any job step.
Arguments are transferred via Register 8, corresponding to
the 910 A-register, and Register 9, corresponding to the
910 B-register. Requests for operation on a path which has
been terminated cause the job to be aborted. All calls,
arguments, and actions are basically the same as in the
910/930 version. The principal change to be noted is that
Register 9 must contain a buffer-block address within the
users’ area when JOCHEKR is called, to provide a place
for the received data to be transferred from the monitor’s
buffer block.

VI. Software Internal Structure

The link-network software package has been designed
to provide an elastic interface between the user-level
programs which communicate through it, and the time-
and-event-driven realities of the physical link communica-
tion signals. Three distinct levels of operation exist within
this software. Each level consists of a collection of
complete non-interrupted processes. The interface be-
tween the asynchronous processes at adjacent levels is
effected via a limited set of queues and flags. Each single
process was implemented using a “Structured Program-
ming” approach (Ref. 3) to increase the understandability
during design, and during possible later modifications. The
interface between asynchronous processes was specified
using finite state machine representations for the cause
and effect relationships which had to be defined (Ref. 4).
Structured programming was avoided for multiple asyn-
* chronous processes because the structuring introduces
more irrelevant complexity than it removes. Requests for
services by a lower level are best regarded as primitive
within the upper level. The actual performance of those
services proceeds in parallel with operations on the upper

150

level, and only the events of request and completion are
relevant to the progress of the upper level.

A change-of-state of the bi-level interfaces actually
occurs when the lower-level process has acted upon a
service request from the higher level. The top-most
software level was described in terms of its calling or user
interface in Section V. These calls serve to transfer the
care of a data buffer between the calling user process and
the queues which interface to the single intermediate-
level process. One such process exists for each path-pair,
and its total state is contained within the Link Control
Block. The format of the state word is shown in Fig. 6.
The contents of this word are altered when a block has
been sent or received over the path-pair. The block
number contains the block-sequence number associated
with the current transmit block. The LCB is in “write
mode” if a block is actively being transmitted; it is in
“read mode” if a block is to be transmitted to it; or it may
be in “no-mode” if there is no data to send, an idle
message has just been sent, and an idle message has just
been received from the opposite end. The bad-block
number and associated flag are used to facilitate recovery,
if possible, if a totally out-of-sequence block is received.
The transmission-retry counter allows seven repeated
attempts to transmit over a given path before it is
declared inoperative. The path may also be declared
inoperative through a terminate operation, or on receipt
of a terminate message. The full-initialize bit must be set
before data transfer can occur, and can only be set after
initialize messages have been both received and sent on
the path. It is reset when the path is declared inoperative.

The intermediate-level process functions as an end-
action or “CLEANUP” operation for any messages which
have been transferred over the communication paths. It
interacts with the user-level interface routines via the data
placed in the LCB. It requests services from the next
lower-level process via calls to interface subroutines
LIREAD and LOWRITE, and obtains completely transfer-
red blocks from the queues by calls to LOGET. The
A-register (Register 8 for Sigma 5) for these calls contains
a pointer to a data buffer block of the format described in
Section V. If the link hardware is not active after the
buffer in the read/write calls has been properly queued, it
is activated by the software. Transfer of the data is then
under control of signals from the link hardware. Whenever
link hardware activity terminates with completion of data
transmission for a given block, the hardware is reactivated
for any block then contained in the queues of the lowest-
level software process. It should be noted that the
hardware can override the direction of an activation kick
from the software whenever the opposite end of the path
is simultaneously activating.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-26

Vil. Status and Plans

The software described herein is currently operable on
three computers: the Sigma 5, Xerox 910 and 930. This
small network is centered by the Sigma, which has an
expandable four-way multiplexer allowing it to selectively
communicate with up to four other computers. Only two
machines are currently defined to the Sigma operating
system, and only the 910 and 930 are currently connected.
The 910 computer is interfaced via the GCF TTY lines to
Goldstone, and it and the Sigma will be used with the
software described here to monitor and control an
automated pulsar track at the Venus Tracking Station.
These two computers were previously used with a simpler
intercomputer communications structure in the monitor-
ing of Spacecraft Ranging Operations with Mariner 1971
(Ref. 5).

Several additions to this link-network structure are
planned for the near future. In the software area three
things will be done: the designed support for ASCII as a
common-denominator text-data type will be implemented
within the Sigma system and made available as part of the
910/930 package. The CLEANUP process within the
Sigma 5 will be integrated with the job scheduler of the
Sigma operating system so that Sigma jobs can be initiated
from the opposite end of the link. Store-and-Forward logic

will be added to the Sigma CLEANUP process to allow
communication between the other machines without
requiring an active job within the Sigma. It is also
expected that the link-network software package will be
translated to execute on other computer types, principally
the DEC PDP-11, and the MODCOMP-II. Hardware
interfaces to the twin-coax intercomputer communication
links and the LOREAD/WRITE level of software already
exists for the PDP-11 (Ref. 2). Hardware twin-coax link
interfaces for the MODCOMP-II will be implemented
using the JPL-DSN 14-line interface (Ref. 6).

The entire software package occupies 1300 words on
the 910/930, and slightly more on the Sigma 5 because of
the complexity of the monitor interface. The required
tables and buffer blocks are not included in this figure.
Slightly over 1000 of the instructions are associated with
the link-network structure and are independent of the
physical intercomputer communications hardware. The
remaining instructions represent the lowest-level hard-
ware-driven process, and as such is tied to the use of the
twin-coax links. The link-network software package is
unpleasantly large, much larger than expected when
initially defined in function, and as a result, a desideratum
under consideration is the shrinking of this software
package by limiting communication to one logical channel
and one computer path for some application in the 910.

References

1 Layland, J. W., and Lushbaugh, W., “A Multicomputer Communications
System,” in The Deep Space Network Progress Report, Technical Report 32-
1526, Vol. XII, pp. 195-199, Jet Propulsion Laboratory, Pasadena, Calif., Dec.

15, 1972.

2. Lushbaugh, W. A, “A Driver/Receiver Unit for an Intercomputer Communica-
tions Link,” in The Deep Space Network Progress Report, Technical Report 32-
1526, Vol. XV, pp. 109-115, Jet Propulsion Laboratory, Pasadena, Calif., June

15, 1973.

3. Dijkstra, E. W., “Structured Programming,” in Software Engineering
Techniques, pp. 83-93, NATO Science Committee, 1969.

4. Holt, A. W,, et al,, Data Structure Theory and Techniques, pp. 16-62, Final
Report to Rome Air Development Center, Contract AF30(602)-4211, Task
1459403, Applied Data Research, Inc., Princeton, N. J., 1969.

5. Erickson, D. E., and Layland, J. W., “An Experiment in Remote Monitoring of
Mu-Ranging Operation at Mariner Mars 1971 Superior Conjunction,” in The
Deep Space Network Progress Report, Technical Report 32-1526, Vol. XV, pp.
156-166, Jet Propulsion Laboratory, Pasadena, Calif., June 15, 1973.

6. Detail Specifications for Deep Space Network Control System, Standard
Interface, JPL Specification ES508534, 1974 (JPL internal document).

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-26

151

Table 1. Summary of subroutine calls

Arguments

Name Cilfr;} 9 : - r:tkuif:'r‘ Response
¢ A-register (R8) B-register (R9) '

IOGET 6 PATH/CHANNEL - Y Establishes read-request
I0PUT 10 PATH/CHANNEL BUFFER POINTER Y Queues buffer for writing
I0SIGNL 11 PATH/CHANNEL SIGNAL Y Queues signal for writing
IOCHEKR 8 PATH/CHANNEL BUFFER POINTER® Y = —8, not available

A = 0, available

A > 0, buffer complete: B = signal value
IOCHEKW 12 PATH/CHANNEL - Y A = ~8, not available

A = —1, busy

A = 0, available

A > 0, A = buffer pointer
IOSTART 4 PATH/CHANNEL - Y Open specified channel
I0STOP 5 PATH/CHANNEL - Y Close specified channel
IOBUFSET N/A START END OF SPACE N Initialize buffer space
IOCLEAR N/A 0 - N Full initialization of all LCBs and system

LCB-POINTER Y Clear specified LCB

BUFGET N/A - —_ A = system buffer pointer
BUFPUT N/A BUFFER POINTER - N Returns buffer to pool
ATTACHPY 0 PATH/CHN = 1} - - Claims job ownership of path
RELEASE® 1 PATH/CHN =1 - — Releases job ownership of path
2910/930 only.

bSigma 5 only.

152

JPL

DEEP SPACE NETWORK PROGRESS REPORT 42-26

Table 2. Feasible signal conventions

Operation T B, B, B, Channel SCB
OPEN 01 0 0 0 # I.D. Byte
CLOSE® 01 0 0 1 # 0000 0001
END FILE* 01 0 0 1 # 0000 0010
REWIND*® 01 0 0 1 # 0000 0100
undefined® 01 0 0 1 # xxxx x000
POSITION 01 0 1 0 # L.D. Byte
SKIP 01 1 F R # Number
unassigned 00 X X X # Any

® Starred operations may merge

F Indicates File operation if 1, record if 0
R Indicates Reverse direction if 1, forward if 0

Table 3. Buffer block format

Label Contents
QCHAIN Block Chaining Link
OWNER Channel/Path 1D
BUFSZE Size of buffer, words (44)
WCW Number of words to send
AWCW Number of words sent/received
STATW Hardware status at termination
DwD1 Data

L

L

to

send/receive

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-26

153

Fig. 1. Link network structure

DST

SRC

BC8

FCS RCB

SCB

MESSAGE
BODY

DST = DESTINATION ADDRESS
SRC = SOURCE ADDRESS

BCB = BLOCK CONTROL BYTE (BLOCK SEQUENCE NUMBER)
FCS = FUNCTION CONTROL SEQUENCE (READ FLAGS)

?

BODY MAY BE NULL

RCB = RECORD CONTROL BYTE (MESSAGE CONTENT IDENTIFIER)
SCB =STRING CONTROL BYTE (MESSAGE BYTE COUNT, OR "SIGNAL")

Fig. 2. Message format

TYPE

CHAN #

LABEL VALUE ASSOCIATION
LNKTAB +4 NUMBER OF DEFINED LINKS
'A' ADDRESS OF LCBA SIGMA 5
B 0 930
'C* ADDRESS OF LCBC 910
D 0 UNASSIGNED
LNKTBT -4 NEGATIVE INDEX
Fig. 4. Link Table structure for four machines
LABEL CONTENTS WORD NUMBER
LCBA CHAIN POINTER 1
STATE 2
CURRENT BLOCK 3
TIMER 4
CHANNEL-ON-FLAGS 5
READ FLAGS 6
HIS READ FLAGS 7
BUSY WRITE FLAGS 8
BLOCKED WRITE FLAGS 9
WRITING STACK HEAD 10
WRITING STACK TAIL 1
$ -2 12
CHANNEL 13
BLOCKS
1-7 19
$ +1 20
BLOCK CHAIN 21
‘Al 22
SHORT
BUFFER
BLOCK 29
Fig. 5. LCB format
L] * L] L]
FIl O]l M D RETRY B | ERRORED [R W BLOCK
UNU|DA O COUNTER|Al BLOCKI[E R NUMBER
L T|LS |0 oW D NO.|A 1|00
L ET N # DT
3 FLG E
R
INIT.

154

Fig. 3. RCB format

Fig. 6. LCB state word format

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-26

